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THE THEORY OF THE DIVISIONS IN SATURN’S RINGS

By G. R. GOLDSBROUGH, F.R.S.
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(Received 9 October 1940)

In an earlier paper on this subject the author (1921) proposed a theory of the rings which
showed satisfactory agreement with the observed measurements of the rings. The mathematical
niethod was, however, subjected to criticism. In the present paper the subject is again attacked
by an entirely different method which is free from the objections raised against the first method.

A family of periodic orbits of the particles forming the ring, when perturbed by a satellite,
is constructed, and the stability of these orbits is examined by the method of small displace-
ments. Stability determined in this way is shown to have a real meaning when applied to
the problem in hand.

The positions of instability of the particles lead to the divisions in the ring and the inner and
outer boundaries, close agreement with observation being obtained. The analysis, though
quite different from that of the earlier paper, reproduces its main features, and introduces
further points of interest.
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In an earlier paper the author (1921) endeavoured to show that the principal
features of Saturn’s rings could be accounted for by the perturbing effects of the satellites,
principally Mimas. The theory so formulated showed a good agreement with observa-
tion. The mathematical method adopted was, however, criticized by Greaves (1922),
Brown (1924) and Pendse (1935). The first two raised objections to the use of the method
of small motions, and the last showed the inapplicability of one of the hypotheses.
It should be noted, however, that this hypothesis was not essential to the main results.

It seemed worth while therefore, in view of the interest of the problem, to re-examine
it from a fresh point of view, and that is done in the present paper.

The method now used is that of periodic orbits. This method, as formulated by
Poincaré, has the advantage of a foreknowledge of the precise conditions of convergence
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< of the series involved. If the conditions are fulfilled, the series are valid for all time.
>

O Saturn being taken as the primary, a satellite is assumed to describe about it an
= unperturbed circular orbit as in the restricted problem of three bodies. In the plane
M= O of this orbit is a ring of equal small particles with its centre at the centre of Saturn. The
E 8 mean positions of the particles are equally spaced on the circle. For this system a family

of periodic orbits is determined depending upon the masses, the number of particles
in the ring, and a single parameter Q.

The particles are then given small arbitrary displacements and the equations of the
variations formed. These equations can be integrated as power series and the charac-
teristic exponents found. For motion with real characteristic exponents we use the
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184 G. R. GOLDSBROUGH ON THE THEORY OF

term ‘unstable’, and for motion with purely imaginary exponents the term ‘stable’. The
question may be raised here as to whether stability or instability determined in this way
has any real physical meaning. In the case of the problem in hand it can be claimed
that it has. Although throughout the work only a single ring of particles is mentioned,
this is an approximation to the complete problem required by the exigencies of analysis.
In the more complete form of the problem a series of concentric rings of particles
should be considered. In such a case the amplitudes of the vibrations of the particles of
any one ring about their mean positions would of necessity be restricted if collisions
with those in adjacent rings were to be avoided. If collisions did occur there would
result a loss of energy and a movement to entirely new positions. Hence, if the motions
of the particles are stable, in the sense mentioned above, the amplitudes of the vibrations
will be restricted and no collisions will arise. But if the motions are unstable, even if
the apparent instability is a faulty representation of what is really a stable motion of
large amplitude, then the aforesaid collisions would still occur. So that, however it
may apply in other problems, the determination of stability by small arbitrary dis-
placements has, in the problem of Saturn’s rings, a definite meaning.

The observed gaps in the rings of Saturn are found to correspond closely to just such
unstable motions of the particles.

It will be seen that, although the analysis of this paper is quite different from that of
the former paper, the results of that paper are almost exactly reproduced. The present
work goes further, however, and shows immediately the presence of Encke’s division,
which required an additional hypothesis on the former occasion.

THE GENERAL EQUATIONS

Assume that a satellite of mass m’ is moving about the planet Saturn, whose mass is M,
in an unperturbed circle of radius a’ with angular velocity ’, such that o'%a’3 = M +m.
Consider a ring of p particles all of small mass m moving in the plane of the satellite
orbit. Taking an origin at the centre of Saturn and an axis through the satellite and
moving with it, let the co-ordinates of the particles in polar co-ordinates referred to the
moving axis be (7,, 0,), where 1=1,2,3, ..., p.

,yMry

2
s

Then, putting 0,=3' D@v -2 cos (0, ~10,),
Ap

1 r

b, = —-Acosl

A 7] A
4, a

2 2 2 !
D3, = r3+ri—2rr,cos (0, ~0,).

A3 =12 +a'2—2r,4" cos 0,
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THE DIVISIONS IN SATURN’S RINGS 185

the equations of motion become

&ry (db, M+m 00, i3,
a2 (dt To ) + % 57)( o ﬁrA

1
d| (b, _96, 08, ()
a’t{ ( a )} =90, ™™ 34,

hp=1,2,3,...,p.)

In the formulae 2’ indicates summation over all values of 4 from 1 to p, except u = A.
In (1) we have 2p differential equations of the second order to solve for the motion
of the p particles. The problem is thus analogous to the restricted problem of three
bodies in that one of the bodies, the satellite, is assumed to be unperturbed by the

p particles, and to maintain a circular orbit about the primary.
When m’ = 0, equations’(1) become Maxwell’s equations (referred to moving axes)
for the motion of the particles forming Saturn’s ring. They have the particular solution
7A == d, )
0, = (0—0o") t+2m1/p, l
\ = (0—') t-+-2mp )

. p=1
w?a3 = M+-m+1tm 3 cosecnm/p.
n=1

The particles are now in relative equilibrium at the corners of a regular p-gon which
rotates relative to the moving axes with angular velocity (v —e”).

We shall assume that M is large compared with m or m’, and that therefore M +m
and M +m' may be replaced by M with sufficient approximation.

When m'#£0 put 7, =a(l+p,), 0,=(v—0')t+2a/p+0,.

Then, since 0, is independent of m’, and @,, 4, can be expanded as power seriesinp,, 7,
which are convergent when
| pu| 8y 10,127, 0=t=21/(0—0"),

where p,, 7, are appropriate non-zero constants, it follows (Poincaré 1892; Moulton
1920) that the equations (1) can be solved as power series in m’, convergent in the
interval 0=<¢< 2n/(v—w’), provided m’ is sufficiently small. Further, if the constants
of integration can be adjusted so that the solution is periodic with the period 27/(v— '),
then this solution will be valid for all time. We proceed to construct such periodic
solutions, on the assumption that the mass m’ of the satellite is sufficiently small to ensure
the convergence.

0

Put m" = ¢, and assume p, = Z e",o‘"), o= €giP.
n=1

Change the independent variable ¢ to 7, = (w—") ¢, and put

w

Q= lﬁilcosecmr/jb:K.
w—ow"’ 4a 5 '

23-2
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186 G. R. GOLDSBROUGH ON THE THEORY OF

Also let the derivatives with regard to 7 now be denoted by dots. The left members of (1)
now become, respectively,

a(a)~a)’)2l: {p(l) 302p(h — 2Q0<1>+2K~Q pm}

2
+€2{ 5(2) 3‘92 (2) 290-32)_}_2](%,0512)

2
—2Q6pV — (¢41)2 4 8022(p{D)? 3](9 (p4! )2}
+e3{...}+...], (3)
and a(w—0")?[e{d(V’ + 225
+ 622 2052+ 202pVp{0 - 26461) - 25D p ¢
+e3{ 3+ (4)
For the right members of equations (1) we have, respectively,
00, _ (90, 920, (D) (2,(2)
i = (WA >0+§(ar/‘arﬂ)0a(eﬂﬂ +e2p 2+ )
020
+§(ﬁm 6§ﬂ)0(60;‘1)+620;‘2) +...)
+.s (5)
20, 90, 920, (1) 4 £2(2)
a0, (aaA)o+,zo(3t9A37,L)oa(€p” +e2p P +...)
020
+ ( /\) 67D 6202 .
2\ 90,00, C0n" TE 0T )
+- (6)
P P 29,
=52 +(T) aleps)+tpP'+-...)
+(ﬁi‘qﬁ§ﬁ/\) (eo{V+e20P+...)
+- (7)
o (020, (%) o
A
+ (W/{‘)O(wj\“ +e2r® )
+.. (8)
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THE DIVISIONS IN SATURN’S RINGS 187

In these formulae the zero derivatives are found by substltutlng ry=a, 0, =T1+2m/p
after differentiating.

The method of solving the fundamental equations is to equate to zero the coeflicients
of the various powers of ¢ and solve the resulting equations in sequence. '

EVALUATION OF THE DERIVATIVES

The zero derivatives of the functions @, ¢ are now required. Only a summary of the
results will be given as the details may be found in the references quoted:

020 m b=l
z(araa;’l ) Wop =7 g2Pr ngl (% cosec? nmr[p— § cosec nm/p)

m, (1+sin?(u—2A
+b~22 ﬁ,‘{ SSirll?(,E/: /1))717;121) +2cos (u—A) 2#/[}},

020

z(ﬁm 0g ) a2 2 o, {7 cosec® (u~A) mfp+ 1} sin (u—A) 2m/p,
0, :

(g ) a0, = 253 2 s cosct (s~ ) misin (1) 2,
%0 _{7_2 P 1+cos®nm/p

Z(aﬁl\ag ) n=l{8 sin® (u~ ) 7,/[,"'005 2n1r/p}

S o s cos (u— ) ).

The higher derivatives follow similarly.

3
We have also P, = 2117 (1 ;}2 %:" cosf A) % cos b,.

This function and its derivatives can be expanded in a series of cosines or sines of
multiples of 7, by well-known methods. Putting « = a/a’, we have

1
(D)o = py (14a2—2¢cos (9A)—'%‘-%occos /N

= %[—%bo—}— (by—a)cos b, + §2bn cos né’,\] ,
where b, b,, ... are the Laplace coeflicients. Hence

(&) — 67172 > B cosn(r+2mA[p),

ary /o

L 1 ;
(ﬁ)o — _6.17; nB, sin n(t-+2md/p),
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188 G. R. GOLDSBROUGH ON THE THEORY OF

and so on, where B, = }b,, B, = b,—a, B, = b,, n>>1. The dashes attached to the B,
indicate differentiation with regard to a. It is to be noted that the coeflicients B, are
independent of 1 and positive.

We also require for later parts of the work the following notation and results:

p-1
N = 2——% > {cosec3 nm/p+cosec nm/p},
n=1
p=1
P, =3 {cosec®nm/p+ % cosec nm/p+ 2 cos 2nm[p} cos 2mns/p,
n=1
p-1
Qs = X {f%cosec® nm/p+ 1} sin 2mn/p sin 2mns[p,
n=1

=1
R = z {2— % cosec® nm/p} sin 2mn/p sin 2mns/p,

B 1-+cos?nm/p 9
1, =2 }_j {—-——~8 Sind 7 +-cos Qnﬂ/p} sin? nsm/p,
S, = 3 st cosnlp 4 sin 2snm/p.

S 16,5 sinan/p

As p is a large integer, we may neglect X cosec nm/p compared with Xcosec® nm/p. We

have then

B 122t sin® nsm/p
=—2AL+N) = 2;1 sin3 nm/p’

also R,=—0Q..

It is to be noticed that 7, is always positive.

INTEGRATION OF THE EQUATIONS

Taking the terms factored by ¢, we have from the previous results

2K
(1) (1) __ 2,(1) (1)
Q‘QU 30 Pr +(w_w/)2/0)t
— 02 @A (1) 9? @A) <1):|
= a( )2 Z(ﬁrlﬁr ) +Z<a 70
1 Ay » g
* 24 (0—a')? 2 By (einm+2mdip) - g=inr2mAip) 0 (9)
1 920 920
=(1) (1 — A 1) A (1)
7+ 2005 (w—w’)z[‘%(ﬁﬂﬁrﬂ)oaﬂ” *% (9(9/136’#)00#]

+

L in(r+2nA/p) __ p—in{T+2m0/p)
2a2a’(w—w’)2§ nB, (e ¢ )'J

For convenience the upper suffix may be dropped temporarily.
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THE DIVISIONS IN SATURN’S RINGS 189

Equations (9) are 2p in number each involving every co-ordinate p,, 7, (¢=1,2, ..., p).
They may be reduced to a single pair by the device introduced by Poincaré (19oo) and
used by Pendse (1935). For any integer s between 1 and p inclusive, we put

o=
Il

z P e—2ms)t/p
A=

|
S N
M

Q

—

2 e—27risz\/]7.

=
I

>
I
M

From these it follows that
1

“
Il

£, e2ﬂi$/l/[1’]
‘ (11)

s .

Q
>
I

= T

Now multiply each A-equation of (9) by 5 ¢~2misAb and sum the sets so formed separately.

In the summations the following results will be required:

,1_ — az@l —2misA/p
Epl: 2KpA+%(5?;ﬁ—r;) Pﬂ:!e
p-1

o (cosec® nm/p+cosecnm[p) &

2
1 2
—{—2;3 2 (%—k 2 cos 2n77/j)) cos 2msnfp &,

i i 2 i _m/M m.__ 2.
which we write as v(N+P,) w?,, v being put for [ K21 so that from (2) 2= %
l _1_ __0_2_@__4) —2misA/p
a%p ﬂ(araﬁﬂﬂ 00 ¢
i (%5 cosec® nm/p—+ 1) sin 2nm/[p sin 2msn/p 1,
= QO Wy
1 1 32@/\ —2misA/p — m l+COS2ﬂﬂ/p
a%%p(ﬁﬁﬂrﬂ) Prt [ ( 8sin® nm/p —|—cos2mr/p)
1-+cos?nm/p
Z (m +cos 2n71/j)) cos 272517/[)] &,
= VTa)2§
.}_ 1 _3_2@)\ —2misAlp mPd 1 3 : s
p ;%]) (8(9/@’«) T,e ZZz_ nzl(Z—ﬁcosec nm/p) sin 2nm/p sin 2asn/p y
= wR
ﬁ z;} ei(n-r+27rn/\/p—27rs/\/[1) — 12 B; ein'rﬁ gk (n—s)2m/p

= 0, unless (z—s) is zero or an integral multiple of p.
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190 G. R. GOLDSBROUGH ON THE THEORY OF

Putn=mp+s,m=0,1,2,....% Then

ﬁz} ei(n1+2nnA/p—2ﬂsA/p) — § B’ N ei(mp+s)'r‘
A=1n p m=0 mps
.. VN | . © )
Slmllarly, z Z _B;‘e—z(n'r+27m/\/[)+2ﬂs)t/p) — z B;np_se—z(mp—s)‘r,
A=1n p m=1
b 1 , .
z z ~nB ez(n7+2ﬂnA/p—2ﬂsA/p) 2 N (mp_}_s) ez(mp+s)'r,
A=1ln p " m=0 mps
o 1
and Z 215 nB e =i (n7+2mnA/p+2wsAlp) z B - s(mp_s)e i(mp—s)T
A=1n

From these, equations (9) become

£,— 201, — (3Q2 4 v N +-vQ?P) £ — v 2Q, 1,

[z B ez(mp+s)'r+ Z Bmp s —z(mp—-s)r],

2aa
iis+2‘Q£$~VQ27:”s‘iv‘Q2Rs§s L (12)
1 ,
= g fo—w 2, Purslmp ) £

— 3 B, (mp—s) e—i(mp—s)‘r:l.
m=1
The particular integral of these equations is

[re] 0
é‘s — z me+sez(mp+s)'r_,_ z X_mp+se—z(mp—s)1,
m=0 m=
(13)
[ee)
7]s — z ZY 6’(m1’+5)7+2 ZY —mpts e —i(mp— s)T
m=0

where
o= sarwao— oy OB VT + T RB(2AQ 1129} + DY(Q)
T T — ~g{aB; (2kQ —vQ?R,) + a' B, (k*+ 3024 vQ2?N +vQ?P,)} =~ D}(2)
Dy(Q) = (2kQ2 —vQ22R)) (2kQ +v02Q,) — (k2 +vQT,) (k2+ 322+ vQ2N+vQ?P,). (14)

* The use of m here as an integer will not be confused with its previous use as a mass.
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THE DIVISIONS IN SATURN’S RINGS 191

In the particular case where s = p we have in place of equations (12)

B,
— y 2f — 0
fp 207, — 30228, l

2(0—0")%
i, +20F, = 0.
These give the particular integral
b= i
p " 302%a'? (w—a)')z’} (15)
7, =0.

It is to be noted that for m any integer including zero, and p large,
})s = Pmp:l:s’ Qs = :’:Qm[z:i:s: Rs = j:ij;:ts: T; = Tmp:l:s;
also B;=B_, B=B., N+P,=0, Q,=R,=T,=0.
Hence X=X, Y, =Y.

The solutions (13) and (15) are periodic of the required form, the new period in 7
being 27. But the solution fails when D5, , ;= 0, as terms involving a factor 7 appear.
Hence for those values of 2 satisfying D5, (£) = 0 no periodic solutions of the type
required occur. But the periodic solution found in (13) and (15) exists at all other values
of Q. '

To determine the complementary function we omit the right-hand numbers of
equations (12). The equations, so reduced, are exactly those used by Maxwell to deter-
mine the stability of a ring of particles with no satellite present. On putting &, yoc €77

we find the characteristic equation
D;(2) =0,

oo (B)+(3) et raT) ~13r2 bR —Q)
+vT(3+vN+vP) +1v2Q,R, = 0. (16)

Maxwell showed that all four roots of this equation were real if » were small enough.
We shall assume this condition satisfied, so that the ring of particles is stable, apart from
the influence of the satellite. Since we require only solutions with a period 27, y must
be an integer, say £. With £ and s fixed, equation (16) gives four real values of Q.
At the positions defined by these values of £2, there will be at least one periodic solution
in the complementary function of the form Ae#”, with 4 an arbitrary constant. At
other values of £ there will be no periodic solution arising from the complementary
function and having this form.

Since values of 2 satisfying D3, (£2) = 0 are already excluded, £ cannot have any
of the values s, +p+s, +2p+s, ....

Vor. 239. A. 24
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192 G. R. GOLDSBROUGH ON THE THEORY OF

In compiling the complete solution of equations (9) we have

§2 .
pr = S e,

s=1

b @ . ©
— zl EOme+sez(m[17'+5‘r+2m\s/p)+ Z X
s=1Lm=

i(— pr+ T+27A ) '
I4 m R S/ﬁ

— XO+ % Xs_eis(1'+27r/\/j7)_§_ % X_Se—is(7'+27r/\/p)
s=1 s=1
— X, +2 3 X.coss(r-2nA/p).
s=1
Hence the final form of the solution is

pf\” — X()(l)+2 Z X;(I)COSS(T—I—Qﬂ/l/p) _|_A§1)ei(kr+21r/\s/p),
s=1

7V = —92 21 Y sin s(7+42mA/p) -+ BLD gitkr+2mdsip), (17)

B Q2T 4-k2) = iAD(2Qk—vQ2R,).

"This solution is subject to two restrictions: (@) £ must not be a solutionof D5, (£2) = 0
for any integer s from 1 to p and any integer m including zero; and (4) 4, is zero unless
Q satisfies D§(Q) = 0 for selected s.

Only one term arising from the complementary function is included in (17). In
special cases there may be others. But as the associated arbitrary constants have to be
determined at a later stage, and as it appears that for a periodic solution these constants
must be zero, it is sufficient to include one term as an example.

The convergence of (17) must be examined. The series

2B,cosn, XB,sinnd, XB,cosnd, XB,sinnd,

are well known to be convergent for |«|<1, 0=0=2n. For a fixed value of £, the
limiting form of XV is

1 ’ ’ )
m{st+20 ‘QBS}_.'S

with a similar form for Y V.
Hence the series for o, are convergent under the same conditions.
A YA
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THE DIVISIONS IN SATURN’S RINGS 193

THE HIGHER TERMS OF THE SOLUTION

Itis necessary to examine the general character of the terms of the solution associated
with higher powers of ¢. For convenience, write

2K )
L(p3, o) =piP — 220 — 3532,03")4-(0)_0),)2,03"’

20, \ 20, (n):l
a(a) ) [z(arA )“”ﬂ +2( Aaﬁ)" (18)
M(pi, o) =60 + 226"

1 32@). (n) (?2 @)\ (n)
~ o) [E (aalarﬂ)o"”ﬂ +2 (aakaaﬂ) ).

Then, taking the terms factored by €2 from (3)...(8), we have

1 . , ]
B’ (em(1'+27r)tlp) +e—zn(1+27n\/p))
24a’2(w—w’)22 "

+206Pp{D 4 (6D)2—30Q2(p{1) 2+ 3K (w—w')2 (p{1)?

1 ‘?3@)& (1) <1> ‘73@ (1) (1)
+a(a)——a)’)2{z (07/\87#37,() Pip +2(0r,1(?r a0 ) Wk ;
+.

S
2a%a' (0 —w

L(IO(2) 0—32)) —

M(p@, () = 3 3 nB, (en(TH2mAID) _ gmin(r+2n2/p))

(D 5(1) (DG _ 9z,
—20p0p30 — 200030 — 263Vp}

1 83@/\ (l) (l) 3@ ) (1) (1)
+a2(w—w’)2{z(0ﬁ,lt?r”(?rk) ip +z(aa ar.00,) 07 }

+..

In these equations, only typical terms have been written down in the right-hand
members.

The left members of equations (19) and the first terms of the right members are
exactly the same as appear in equations (9). Hence the complementary function and
part of the particular integral will be the same for p{®, 0{?, as for p{V, ¢{1’. New terms
will appear in the particular integral arising from the remaining terms of the right-hand
members. Consider the part of the particular integral arising from the term 2Q4{1p{V.
On substituting from (17) it is found that terms of the form cos (m—n) (7+27A/p) and
cos (m+n) (1+2nd/p) appear. These are of the same type as those already in the
particular integral. In addition, there will be, for four special values of 2, a term
thX§VBV ¢k +2mas/p) - Since for these values of £, ¢#7 is part of the complementary

function, this term will give rise to non-periodic terms in the particular integral unless
24-2
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194 G. R. GOLDSBROUGH ON THE THEORY OF

BV = 0. Hence the arbitrary constant arising in (17) must be zero; and a similar
argument will apply should there be more terms with arbitrary constants arising
from the complementary function of (9).

Further, it is clear that the only types of terms appearing in the right-hand members
of (19) are circular functions of multiples of (7+2mA/p). A single example will suffice.

Consider the term
zz( 9°0, ),o“’p‘“
(?r,\arﬂt?rk o F e

noK

On differentiating and reducing, it exhibits three groups of terms having the forms

z/ Fl (/1—'/,{) Xan gitm+n) 7+ilm+n) 277#/1;’
P

z/ F2(/1——lu) Xan gitm+n) T+ilmA+np) 27;/1;’
P

3 Fy(A—p) X, X, gitmem 7rilmew 2nAlp,
”

where each F(A—y) is a definite function of (1—x) and such that
F{d—p) = F(£p+A—p),

and X is independent of x. Then

z’ Fl (/1 __ﬂ) me;l gilm+n) T+ilm+n) 2mp/p

"

— 2/ Fl (/1—,u) gitm+n) (/t—/\)Zﬂ/ﬁXmX;lei(m-)-n) (r+27A/p)
2

Since the coefficient X' F; (1 —p) ¢'m*» (=2 27/b i independent of A and g, the function

"
has the form, a constant x ¢(m+n) (r+27d/p)

Similarly, z’ Fz(/l___lu) Xan gitm+n) T+ilmA+np) 2m/p
p

— N/ in(u—A) i(m+n) ( )
__z FQ(/I——,U) einlp ) 2n/p Xm/Ynez m+n) (14+27A/p ,
o

which has the same characteristic form.

The last expression is already in the appropriate form. Since then the only types of
terms appearing in the right-hand members of (19) are of the form ¢*i(7+272/6) it follows
that the solution of (19) will be similar to that of (9), viz.

o)

p5\2) — X(()2)+2 z X;Z) coSs S(T+27T/l/p) +A§2)ei(k1'+27nls/p),

s=1

7P = _9 21 Y® sin (74 2mA/p) -+ B2 ¢itkr2mAsip), (20)

B (vQT 4 k2) = id® (20k —vQ?R).
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The values of X2, Y2 are more complicated than those of X, Y{). But they will
have the denominator D$(£2) and may have also another denominator D7(£2), where n
is any integer, including s.

On proceeding to the terms in €3, it will be found as before that for a periodic solution
the arbitrary constant 4{? = 0, and that again only terms in the form of circular functions
of multiples of 74 2n1/p appear in the right-hand members of equations associated
with p,, 7,. The solution at this stage will also have the form of (17) or (20) with new
coefficients X, Y® appearing. |

The complete solution of equations (1) having the period 27 is therefore

rja=1+ i "X +2 % e % X" coss(1+ 271/1/[)),]
1 n=1 s°=01 (21)
O, =712m\p —23 ¢S YW sins(r+2mA/p). [
n=1 s=1

This solution is valid for all values of 2 except those satisfying the equation D5, ,, () =0,
m, s being integers. From the theorems previously mentioned, the series are convergent
for all time provided ¢ is sufficiently small, except at the points defined by D5, (£2) =0.

The positions at which the periodic solutions do not exist are analogous to those
appearing in similar problems. On putting v indefinitely small, the equation D$(2) =0

reduces to
$2(22—s2) = 0,

giving 0Q =+,

o s+1 s—1
or S N
© s s

This is in agreement with known results in the satellite problem (Moulton 1920).

THE ROOTS OF THE CHARACTERISTIC EQUATION

To determine the positions at which no periodic orbits exist, and for other purposes,
we require some knowledge of the roots of the algebraic equation (16) which is

(B) +(5) 00+ BT~ +2(5)o(R—Q) -+ T340 N +0P) +12QR, = 0. (22)

We only need to consider the case applicable to the problem, that is, the case when
the ring of particles without a satellite is stable. As already mentioned, this case occurs
when v is sufficiently small. We shall suppose this condition fulfilled. Putting v = 0
in (22) we have y/2 =0, 0, +1, as the four roots. From the general theorem on
equations it follows that the roots can be expressed as power series in v* for the first pair
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and v for the last pair. On working these out we have, with sufficient accuracy for
our purpose,

7@ = 1—3p(N+PAT,+2R—2Q) +..., (23)
Yo/ = —14+3w(N+ P +T,—2R +2Q,) + ..., (24)
75 Q = JST) (R —Q)+ . (25)
7@ = —J(3T) +r(R— Q) + ... (26)
The positions at which D$(2) = 0 are therefore
Q=s{1—w(N+P,+4T,+2R,—20Q,)+...}7}, (27)
Q =s{—1+Ww(N+P+4T,— 2R +20Q,)+...}7, (28)
Q= s{/(3T,) +...}7}, (29)
Q=—s{/(3T,)+...} L (30)

(s=1,2,3,...,p).

Values of 2 which are negative will be rejected, as they refer to positions outside the
orbit of the perturbing satellite and are therefore of no physical interest. It is obvious
that under the assumed conditions, equation (22) cannot have a pair of equal roots,
but two roots may differ by an integer. Consider the more general case of the latter
supposition. Suppose we have

and D, (2)=0, (n>s)

r+q

for the same value (or values) of 2, ¢ being an integer. Then from the preceding results
we have, keeping only those which produce positive values of £,

(i) Y2 =—1+wW,+...

Q= q2—v(U+V)+..}71
(ii) 72 =—14+vV+...,

Q=q2—vV+U,)+..}7"
(iii) /92 =J(3T)+...,

Q = g{J(3T,) —J(3vT})} 15 (31)
(iv) 7[Q =—J(vT,)+...,

Q= gJ(3T,) +J (BT}
(v) 72 =J(T,)+...,

Q=q{1—J(3T,)+..}74
(vi) 7/Q = —J(3VT) +...,

Q= q{1+/(8vT,)+...}7L
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For convenience we have written

U

Il

%(N+Rs+47;+2Rs_2Qs)>
and | V.=1(N+P,+4T,—2R,+20,).

Each of these solutions will be required in the sequel.

THE VARIATIONAL EQUATIONS

We next proceed to study the stability of the periodic solutions just determined,
using the term stability in the sense defined by Poincaré (1892).
In the fundamental equations (1) substitute

0 — A0
A‘“rfl)"l"ax)u '9/\”"85\,)'{".%\’

where 7, {0 are given in the periodic solution (21) and first powers of x,, y, only are
retained.
~ The equations then reduce to

dd;A axA(dZ‘” +w) 2”510’6% (dfiff) w,)_ _2(?4(_&4 \
B T v RO ey REEA C S REA T B
()20 -’“+2ar<°>ddi;‘ xﬁwam%% C (32)
I B )

=2 ax (a% ?3? ) 2 yﬂ(%ﬁ)ﬁ“‘x’l(a{;ﬁ%) +%(a;g?) :

The zero suffix to the derivatives implies that, after differentiating, the substitution
r, =12, 0, = 0\ is made for each A.

Divide equations (32) by (v—w’)?2 and change the mdependent variable to 7,
= {(w—0'), as before. Also substitute

MO = a(1+epf+epP+...),

00 = 'r+2ml/p+w(“+¢-:20‘f\2)+
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Equations (32) then become

2Mx)( X (?2@)( y 02@/\ ]
e 00y 2__ — Foss - !
Xy 29]//1 x)('g a3(w_w’)2 %(Q)——w,)2(an\a7‘ﬂ)00 ( )2(87/106M)00
(1
- 6[2:9on<“ T2\ 03+ 280309, — gﬁs‘(%

*u {( 90, ) (1) ( 83@/\ ) (1)}
+Z(w—a)’)2 (?r/\(% or, Oode + 87)(67#8@ OOJK
30, 7?0,
I, S S )
+za(a) o)? {(amaﬁ or )00 b +(arlaeﬂaak)oo‘“ }

+*&M(%) LN (02%) ]
(w—0")2\ 0% )yy  a(lw—0")2\dr, 00,/

+e[ ]+
r (33)
X, 020, Y, 9°0,
and  §,+20%, — Z a(o— )(89)((% )00 202((0*0)')2(3,9/\3,9)00
:€[~2,0§tl)y)t—2x;\0'(l) 20, 51 — 20, p{D — 2Q%, p{» — 24, ¢V
Xp {( 9’6, ) (D ( 9°0, ) D
T2 a2 \amar,ar ) 0K+ 00,37,00,) o, }
20, 20,
+2 o0 w)2‘(8¢9 70, 0r )OO api” (aa 7, aa) "m}
L ( 9°P, ) L 32¢A)
a(w—0)?\00, 073 /o aZ(w—w'V(ﬁﬁi 00]
e[ ]+ |

The values of the derivatives with the double zero suffix are obtained by putting
7, = a, 0, = 7+ 2mA/p after differentiating.

The right-hand members of (33) are known to be convergent series in ¢, for values of ¢
sufficiently small, and the coefficients p*, {® are also known to be convergent series
for |a| <1, 0<d<2m.

The equations are a set of 2p linear equations of the second order with periodic
coeflicients, of period 27. By Flocquet’s theorem, the solution is known to be of the form

X, = eTu,,

34
y,\zec"v/\, (/1: 1, 2, 3,...,?)’ ( )
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where u,, v, are periodic functions of period 27, and ¢ is a constant determined so that
this condition is fulfilled.
Further, it is known that, by Poincaré’s theorem (1892), we may express ¢, u,, v,
as convergent series in powers of ¢. That is,
¢ =1cy+ec,+€%y+ ..., )
uy = ul® +eull +e2ufP + ..., (35)
v, =00 +evi +eP ...
The solution is determined by substituting (34) and (35) in (33) and equating to

zero the various powers of ¢.
Consider first the terms independent of e. They are

L0, 039, ¢0) =i\ + 2icy i{® — cgu® — 22552 +icyvi®) — Q2O
2Mul® u® 9%0, v 020,
CdBe—0)? 4 (a)—a)’)z(ar,\ﬁr )00— alw—ow’)? (8560 )

M(u®, v, ¢,) =90 4 2icy 0 — cZv ' + 22 (4 +icyv{?)
u® 920, p® 920,
~2 o= w)Q@m)m“%w@-wy@@w)m““

Multiply each equation by %e‘zm"/ﬁ and sum each set with regard to A, choosing s

(36)

any integer from 1 to p.
If v i (A0, 0D ¢=2misA/D — O[O,
the equations become
L(k,19,¢,) =k + icy k(0 — 3k — 2010 +ic, 1)
—Q%(3+vN+vP) kL —w2?Q 19 = 0 ]
MEO, 1O, ) =[O+ 24cy [{0 — 31O + 20 (kL0 +icy k()

’ (37)
— Q2R O — p Q2T =m]

the values of N, P,, @, R, T, being those already used. The component parameter ¢, has
to be determined so that £(, [{» have period 2.
In general, we may take the constant solution

kO = FO),

[0 = [, (38)
[ — k0 (2Q¢,—v2?R,)

s g+ v, ’

Vor. 239. A. 25
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The equation to determine ¢, is then
D3 ()= —{c3+ 223+ vN+vP,)} {c+vQ2T }+ (28¢,+v22Q,) (22¢cy,—vE2?R;) = 0. (39)

This is simply equation (16). Under the conditions there mentioned it has four real
roots, which have been detailed in (23), (24), (25), (26). The general procedure is to
take each of these values of ¢, in turn and carry the solution to the next stage by
considering the terms in ¢. But three special cases need considering:

(1) The roots of (39) are all distinct whatever the value of s. The solution of (36)
associated with one of the values of ¢, derived from (39) is then

uf\O) — 75;0) e27ris/1/p,} (40)

(0) — J(0) y2misA/
v =[O g2misAlp,

the relation between [(® and £{ being (38). Only one arbitrary constant appears in
this solution. As there are 4p distinct values of ¢, in the aggregate there will be 4p
arbitrary constants, as is required.

(i1) The roots of (39) for a given s differ by an integer ¢. We have then for the same
s and 2,

D:(2) =0 and Ds, (Q)=o0.
The solution of (37) is then
kO = /Eg())_!_zg())eiqr,
1[0 = Z;m_l_j;m ¢, ] (41)
. 0y k0{2Q(c,+ q) — 2R} [
with [{0 = (cobg) P Hv 2T
That is uf\‘” — (]E§0)+;§O)eiq7) eZm's)./j),
g s, | (42)
1)5(0) — (Z;O)—!—ZS(O)&’QT) g2misAlp.

(iii) The roots of the characteristic equation differ by an integer ¢ for different values
of s. That is
Ds(2)=0 and D7

cotq

(@ =0,

for the same value of 2 and s+n.
The resulting solution is

ul(lm — ~:0) e27ris)t/1)+k_—’(10) ei(qr+2ﬂn/\/[)),\'
43
”30) — [S(O)eZﬂisA/p_l_[}gO)ei(qr+27rn/\/p), f ( )
L0 2
and : [O — 2kr(z ){2‘9(00+q) —vl2 Rn}
" (co+q)2+v2?T,
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Critical cases may also arise when the characteristic equation has equal roots. But
it can be seen by inspection that, under the conditions assigned, this cannot occur
except for particular values of v, and the matter is no further discussed.

It is to be noticed that in case (i) £ is arbitrary. But in cases (ii) and (iii), special
values of 2 are prescribed. That is, the occurrence of the special roots is only found at
those positions where £ has appropriate values.

The three special cases are now treated in detail as they arise in the terms of (33)
associated with e.

THE TERMS OF THE VARIATIONAL EQUATIONS ASSOCIATED WITH €

Case (). All the roots of the characteristic equation distinct.
The terms in (33) associated with the factor ¢ are

L(uP, vV, ¢,) = — 26,40 — 2icyc, ul® 4202, v + 2Qu(? 6V ]

6 Mul? 1)
0) # (l) (0) 5(1)
m+22000 +2.QZC VP

up 20, 0,
(1) (1)
200 w)Z{(amaf (?r) WP +(8r,187 7 )00" ]

3

v 9°6, 9°0, (D
T2y :(amaa o )Ooaf’K +(amaaﬂaak)oo"x ]

L (92@) Lo (92@ )
(0—0)2\ 93 oy " alo—a' 205,00,y
M(usD, 00, ¢;) = — 26,040 — icyc, v — 20¢, ul®

—‘2,0(1)(1)(0)—]—216'01)(0)—()21)5\0)) QUf\O)O'(l) QP(I)('U(O)“]‘ZC v(O))

_2Qp(l)u(0) QQIO(D(uRO)“f—ZCOu(O)) 20'(1)(u(0)—|-l(; u(O))
u(O) 90, (1) 9°0, )

T2 )2{(00 ar, )OO“PK +(aa ar, aa) }
p(® 20, P20, \ .,

= w)z‘(&‘ﬁ,\ﬁﬂ a7 )OO"”K +(90Aaaﬂaak)oo‘“ }

") 92 (O 92
I )\/2‘(_ A)""z/\/z( 2/\).
a(w—w")2\00,0r, )00 a*w—0")2\ 30% )y,
The right-hand members of these equations are all known functions of 7 associated with
certain arbitrary constants arising in the previous step and with the unknown para-
meter ¢;. The parameter ¢, has already been determined from the equation (39) for
the first of the three specified cases. The complementary function, obtained by solving
L(uf\l)a vSLl)9 CO) =0,
M(ui, 030, ¢o) = 0,

+ 21}5\0) 0‘-31) + 2!21}5\0)105(1)

J

(45)

25-2
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will be of the same form as (40) with new arbitrary constants. The particular integral
will consist of a series of periodic terms, the only critical case arising from the constant
terms of the right-hand members. Since for the selected value of ¢, equations (45)
are satisfied by constant values of u{, v{’, the presence of constant terms in the right-
hand members of (44) will give rise to non-periodic terms. Hence for a periodic
solution, ¢, must be chosen so that these constant terms are removed. To formulate

the result, multiply each of equations (44) by %e‘mﬂ/ﬁ and sum each set from 1 = 1

to A = p, putting

b . 12 .
kél) - /\E ugl)e~2msx\/p, l;l) I z vgl)e—ZﬂzsA/p’
=1

yae

|-

On the right-hand side, only the constant terms will be retained. We have then
LKV, 1D ¢0) = — 2icye k49 +20¢, 10 — 6/E§°’X(§“{.Q2 — (5%)—2}
o EO) p2misu-1p 1 930
0 Y (D s A
+2‘QZCOZJ XO +z (0)—&),)2 (37/137/437;)00

[ g2misu=ip (330, W FoB!
2y (37A8rﬂ30K)OOXO 1 e

ada’ (w—w")?’ (46)
MED, 1D ¢o) = 2icye, [0 —20Q¢, k9 4 263 [0 XV

()
0

o (O p2mis(u=2) 1 330

o (0) ¥ (1) s A v
Q.QZCO /fs Xo + z (a)_« a)’) 2 (8(9/\ (?rpﬁr,()ooXo
L0 g2risu=2) 9309, )

2= (09A39ﬂ07K)X0 ' y

In order that no non-periodic terms may appear in the particular integral we must
have that on multiplying the first equation of (46) by ¢3+v2%7; and the second by
—1(280¢,+v£22Q,) and adding, the right member must vanish. It appears from (38)
that the ratio /{9 /(9 is a pure imaginary. Further, it appears on inspection that of the
terms involving derivatives of @,, those with odd f-derivatives on summation are pure
imaginaries, those with even f-derivatives are real. It follows at once that ¢, is then
a pure imaginary.

Hence when £ is such that all the roots of the characteristic equation are distinct,
the periodic solution (17) is stable to the order of the first power of'e.

Case (ii). The roots of the characteristic equation differ by an integer ¢ for the same s.
We use equations (44) with the values of u{?, v{® given by (42). After substitution

multiply each 1-equation by% ¢~2msA# and sum each set for A from 1 to p, retaining only
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the critical terms, that is, those that are constants or contain the factor ¢47. We then
have

D= - A
L(k0, 10, ) = e — 26, igh — 2o, F0 4206, [
1 20ig X0 [© XD {.Q % _Kw,)z} FO 42046, XV [©
/“gém e2mis(u=20/p 33@/\ .
> (0—w)? (3r)t0rﬂ(?r,<)00 0
[10 g2misu=D1p 1 3@, i 120)33
+2 (0—0)2 (87A8rﬂ3(9,<)00X° +aa'2(a)—a)’)2:|
. K
— iy c, O + 206, 1O — 6XV {92 — = w')2} 30
FO) g2miu=N1n (330, W
R s (amarﬂam)oo 0
[0 gmiu=N/p 330, 0 FO B!
+2 (0—0')2 ((97’,\07”(?(9,()00 0 +aa'z(cu—a)')z’ F(47)

CF(RD, 1D, ¢,) — e"qT[-— 2¢,igl O — 2icyc, [ — 20 FO

+2¢2X D [0 + 4qc XV [0 + 263 XV [0 —2Q4q XV EO

. - F(0) p2mistu~2)/p 7360
— (1) F(0) s A (1
QZCOQXO ks ‘1’2 (a)—a)’)2 (aahar‘uar’c)oo 0
iS(O)eZWis(,u-—/\)/ﬁ 33@/1 ol
T2 =) <00A35ﬂ07,<)00X0]
—2icy¢, 10 — 200, FO 422 XV [0 — 21, QXD EO

/Eth) e2mis(p—AYp 63@/\ o
R et (aeAarﬂarK)ooXO

[;0) ezmw—M/p 33@A
a(o—w')? ((90,180”8@)

The constant terms appearing in the right-hand members are of course the same as
in (46). In order that no non-periodic terms should appear in the corresponding
solution two conditions are to be fulfilled:

(a¢) on multiplying the first of equations (47) by ¢3+vQ?%1;, the second by
—1(280¢,+v22Q,) and adding, the constant terms must vanish. Since £{9/[(? is a pure
imaginary, it follows as before that we have ¢, a pure imaginary and £ arbitrary;

(b) on multiplying the first of equations (47) by (¢,+¢)%2+v2?%1;, the second by
—1{2Q(cy+¢q) +v22Q,} and adding, the sum of the terms factored by €47 must vanish.
Since £ /I{? is a pure imaginary it appears again that ¢, must be a pure imaginary.
It will be noticed that the two sets of constants (£, [(?), (k©, [{?) are independent of

X

0
00

+2
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204 G. R. GOLDSBROUGH ON THE THEORY OF

each other, and two values of ¢; arise from the two conditions. Hence we choose
k{© = 0 from (a) and ¢, with £{* arbitrary from () or conversely. In either case the
result is that the periodic orbits are stable at the points defined by

D;(Q2) =0, Ds, (2)=0.

Case (iii). When D (2) = 0, Dt , (£2) = 0 for the same value of 2 and s+#n.
Then, as stated, U = ko eQm‘M/p_l__/?r(IO) gitar+2mA/p)

2)510) — Zs(O) eZm'M/j)_{_Z_éO) ei(q*r+21m/\/17),

o) k9 (2Qc,—v2?R)

$ cy+v82%T, ’
JO) i/?sz){QQ(Co”{“’]) — V2R }
T (eotq)E v,

On substituting in (44), critical terms arise from the constant terms in the right-hand
member and from the terms involving ¢47. Consider first those terms which are con-
stants. These terms appear when s+ ¢ = n. Then from (44) we find, on multiplying

. 1 . .
each A-equation by = ¢~27isA/# and summing the separate sets from A = 1 to A = p,
q y » g p

L(ED, I, ¢0) = — 2icoc, k0 42026, I{0 +2QqY Dk 4 2¢%Y D [0+ 2Qig X 1) [0
K K
(0—0")? (0—w')?

+2icy g¥ D [0 4-2Qic, XV [0 + 2Q4c, X [0
V2~ 3(N+P) X§OEO —§(Pt- P, 3N+ B) X B
+ (8, — S, —S,) YD L + 46 (S, 48, —,) XL [
+4i(N+ P+ P,—P) YV [0}
n Bg/?§0>__+ B’ kO _ gBL 0"
aBw—0")? " d¥w—0")? ad'*(w—0')?’ L(48)
Mk, IV, ) = —2icye IO — 2Qc kO + 22X D [0 40y g XV [0 20 XV 1
+ 263 X D [© 4 2%k YD — 22X 1 [0 — ¢ ¢ X D [(O
—2Qic) XV EO —2Qi1c) X D O —21g2Y D EO — 21c q¥ L £
+Q%i(S,— §—S8,) XDEO +i(N+ P,— P,+ P) YV kL
+2(N+P) X IO (N4 B,— P+ P) XL
+2(S,— 8, —8,) YD I©
igB’ k¥ ¢*B_, [0
Cad (w—o)? a2 (w—o)?"

- 6{92 - } X{VFO 6{!22 - } XWEO

J

Next, on taking only the terms factored by ¢47 in (44), multiplying each A-equation
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THE DIVISIONS IN SATURN’S RINGS . 205

by %e‘z"i”"/l’, and summing the separate sets from A = 1 to A = p with s+ ¢ = n, we find

- _ A
LKV, 10, ) = ef«n[— 26, igk® — 2icy ¢, KO -+ 206, [0 — 20 Y1 O
. - K -
+2.quX(§”Z,§°’—6{Q2—— oy KR

K . .
— 6{!22—- (w—w')z} XM EO —2¢ig¥ 0 IO
| +2Qicy XV [ 4 2Qic, X§D [
QY 8(N+ B) X KO —4( B+ P3N+ B) XK
(S48, —8,) TOEO 4 4i(8, —S, —S,) XD [©
+4i(N+ Pt B— B) Y10}

BLEO BIE® il B, 7
+a'3(w—w’)2+a’3(w—w’)2 aa’?(0—w")?]’ r (49)

MED 1D ) = e"qfl:—Qiqcl [ —24¢q ¢, IO — 20¢, kO - 2¢2 XV [0 + dgy g XV O
+ 263 XD 1[0 263 XD [0 1 22 YV FO 4 2, g XV [
—20Qig XV £ —2iQq XV E® —2iQ0, XV EO
—2iQ0, X{V EO + 2ic, g YV FO
(S, 48, 8,) T ED +i(N-+ Py — P B) Y0 O
F2(N+B) XL + (N4 P By B) X LO
+2(Sq+Ss_Sn) Yq(l) ZS(O)}
igBk® ¢*B,I©
aa'z(w~w’)2—-a2a’(a)-—w')2:l'

THE STABILITY IN GERTAIN CRITICAL CASES

In order to examine the stability of the periodic motion under the conditions of
case (iii) we shall find it necessary to proceed to approximations. The criterion formu-
lated by Maxwell for the stability of a ring of particles unperturbed by a satellite was
that v should be sufficiently small. With this condition fulfilled it is possible to evaluate
approximately the quantities arising in equations (48) and (49).

The solution is dependent upon the fact that

D:(2)=0 and Dz, (2)=0 (50)

for the same value of 2; to which is added the further condition arising in (48) and (49)
that g+s = n, ¢ being a positive integer. The values of ¢, and @ satisfying (50) for given
values of s and 7 are detailed in (31). Only the results corresponding to a positive 2
are shown; those corresponding to a negative £ refer to results applicable to rings

of particles outside the orbit of the perturbing satellite and are of no physical interest.
Consider first case (31 (i)).
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206 G. R. GOLDSBROUGH ON THE THEORY OF
We have then
€/ = —1+4v(N+ P, +4T,+40Q,),
Q = g {2~ WEN+ Bt P AT, +4T,+4Q,— 4Q,)}.

1 22 cosmm/p

Si = .
mnee @ 8 .=, sin?mm/p

sin 2mnm/p
-1
§.2 Sl — o(s?)
and T,(max) = O(p?),
in retaining only the highest terms in p we may omit ),. Then
2 = YL+ (T4 T},
= — bl +B(L— T},
Dt = —$q*4-1v¢* (7T, + 71, —5T),
[0 = —2ik® (1 —vT+DT)),
0 = 200 (1—v T, + T,
+v2?T, = F¢*(1+10T,—DT),
(¢o+q)2+vR2?°T, = +¢*(1— DT, +1WT)),
—1(2Q¢)+v2°Q,) = %ig*(1+DTy),
—i{20(cy+q) +v2°Q,} = — i (1 +pT,).
Using these values we may reduce equations (48) and (49). They give, from (48),
L(ED, 10, ) = O l:—clzq (18T, +495T))

— P2X D (34-24T, 35T + /3(wB w)z:l

+/?,(l0) [qug; —5—3LT —ﬁVTS—]-ﬁﬂ;— 2VSq — 208+ 2vS,)

 qE P (1= 5T+ 30T, VT, — 30, - 1S+ 1)

B, 2q1—vT,+pT) B,
w—w')? aa'?(w—w")? :I’

+a’3( e (51)
FED, K,0) = KOl gL =9 T +-HT,) +ig?Xg (~ b +97T)]
+EO[i2X 0 (— b+ BT, — T+ DT, ~ oS, S, + b,
+i@?Y V(=1 —=2T + PT, + T, +vS,+vS,—vS,)
iqB; 2iq%(1—vT, +2T) Bq:l '

— g —
aa'*(w—w")? a’d (w—w")?
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THE DIVISIONS IN SATURN’S RINGS 207

The condition that no non-periodic terms may arise in the particular integral of
these equations is obtained by multiplying the first by 1¢?(1+1W7;—Zv7)) and the
second by 1i¢?(1+%v7T,) and adding. The resulting value of the right-hand member
should be zero.

This condition is

1,2 11 7 ”.
B[ eig (- T WT,) + (X (3 3pT) + UL Lol 0]

FEO[ (X0 T~ T, — 0T, — WS, — S, 1S

T (T

N

— 158, — T%VSQ)
LT, PT) By P(14+39T,—39T,) B,

a(w—w')? aa'’?(w—w')?

Y(1—vT +T) B
9( 4 n+2V s) q]=0. (52)

a'a?(w—w')?

Similarly from (49) we have

Lk, 10, ¢,) — ewr[k«»{c ig(1+40T,— 9 T))

N

_q2X61)( —1—24VT+35VT)+ 3(0)37)}

i k‘;m{qZX;n( 3 STT — ST, 5T, — 208, — 208, + 20,

QYD (13T, — 3T, —vT, — oS, + 1S, + 1S,

B; 2q(1 —vT,+5T)) B;}]

+a’:“(a)—a)’)z aa’*(w—w')?

MY, 10, c5) = o Bfe, g1 =T, +3T) + i (3 DT}

B XD (4~ T+ T, — DT, + S, + S, — bs)

+1g?Y V(1 =31+ T, — T, —vS, —vS,+1S,)

iqB, 2i¢*(1 —vI,+ 7)) B, }:I

ad’?(w—0")? a’ad (w—w'")? (53)

The condition that no non-periodic terms may arise in the particular integral of
these equations is obtained by multiplying the first by 1¢%(1 — 27,4 1WT), the second

Vor. 239. A. ) 26
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208 G. R. GOLDSBROUGH ON THE THEORY OF

by —34i¢*(1+7vT,) and adding. The resulting value of the right-hand member must
be zero. That is,

A . 1g2(] — 2T 111
fz‘”{clzq (— 3T D) + g X0 (— 3 — 30T + 2L a,séxa’)’_s;ﬁ); vT,)

FRO| QXD (—§ =TT, T, — S, S, + sS,)

LY 4T+ FT, — 5T, + S, 1S, 105))
W1 —PLAT) By (1T 430T,) B,
a¥w—w')? _ aa*(w—w')?

¢*(1—vI+3T,) B
a'az(w—z)’)2 =0 (54)

The eliminant of (52) and (54) gives a quadratic equation for ¢;, upon the character
of the roots of which depend the stability or instability. Without a knowledge of p
it is not possible to work out exactly the index ¢; but certain inferences can be made.
For small integers ¢, 7, , and 7/ differ by a quantity of lower order than either. With
sufficient accuracy therefore we may put 7, = 7 provided (z—s) is not a large integer.
In addition 7, for a small integer ¢ may be neglected in comparison with 7. Also the
maximum value of (S, —S8,—S,) is of the same order as the maximum value of 7,. We

shall write it S;. Equations (52) and (54) may therefore be written

EOoyigh (4~ ) + X0 (— 4 33T + 3L L) Bol

adw—w')?

HEO XD (= § 5T S,) + g YV (3 4T, — S,

1 (14T By (1 +pT)) B, q4(1+%v7})}

a3(w—w')? ad*(w—0")? " daP(w—0")? -0
2By (1 +vT) o (59)
EP{eyig?(—1+-DT,) + X (— = 50T, + 3L E )

FEO(P X~ 3T~ 5) + Y R+ T~ f0S)
) B, ¢*B,(1 49T

q

1?1 +0vT) B;’ @1 +0T,
a

+ Blo—w')? aa"*(w—w')? da(w—o' )2 | 0-
Whence
L(1vT) B!
@~ vT)+ (0 T xpo)

= — XV (33T, +3S,) + YV (3 -+ 10T, — FS,)

1(1+vT) B ¢*(1+2T)) B, q4(l+gv7;)3q}2 (56)

Alo—o')? ad’*(w—w')? a'a?(w—w')?
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THE DIVISIONS IN SATURN’S RINGS 209

The nature of the stability then depends upon the relative magnitudes of the two
terms independent of ¢,. It is known from Maxwell’s theory that for the stability of
the ring unperturbed by a satellite the condition to be fulfilled is v7,< 0-039. We may
use vT; as a parameter varying with s between the limits 0 and a value >-0-039, and
hence

LS

DOj=

= = —
1S9
Equation (56) will determine the stability between these limits.

Consider first the case where 2 = }¢; that is, 7, = S, = 0 for some s. Evaluating
the coefficients XV, Y, we find

1R ’ 1 4
ZBO 32X (D — BO+§_“___.~BO .

AB3w—w)? 70 T 2ea"%(0—0")? (57)
_:LBII B[ 2B
3,21 13,2V (D) 2Dq 45, 95,
and s° X,V +ig°Y, +a’3(a)—a)’)2+aa'2(w—w’)2+a2a'(a}~w')2
1 " ,
~ s U B eB D+ B2 1) (59

Omitting the denominators of (57) and (58), we have the following numerical results:

q 02 a (=ala’) (57) (58)
2 1 0 0 0

3 3 0-48 0-282 2-61
4 2 0:63 0-775 7:23
5 3 0-71 1-427 14-42
6 3 0-76 2-24 21-95

It is clear that the periodic orbits at £2 = }q, for ¢>2, are unstable. They will also
be unstable in the vicinity of £ = 1¢, but detailed calculation in each case would be
necessary to determine the range of values of 2 in the vicinity of this point. The margin
of instability shown by the table in the cases of ¢ = 4 and higher is clearly such as to
ensure that the orbits are unstable over the whole range of values of £ given by the

1
inequality 3= Q< i _2_%}7., . But it is doubtful whether this range will be covered in
4

s

the cases ¢ = 2, 3.

Consider next the solution (31 (iv)). This gives, on retaining only the highest order

terms,
26-2
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210 G. R. GOLDSBROUGH ON THE THEORY OF
Q= 7 ,
v{J/(3T,) +J (3T))}
Co = '—V%«/('?’Ts) Q,
D 7
q —
T v{J(BT) +V (BT
xo 12 £0
7 da(w—w')2 DY 775
Bl
(1) — 0
&P = 3aa"?(0—0")?2 Q%
Y 3¢B,Q*
g 2a%a’ (0—w")? DY’
20T, — T,
4T, ¢°

Cot- @ +12T, = gy JT
—(2Qc,+vR2Q,) = 2?2, /(3T,),
280y 0) 09 =~ e
0 __ :,Zg/_?lgo_)

T N (AR

o _ h?2J(3T,)
W=y o

Substituting these values in (48) and retaining only the terms of highest order,

_ ; Q)
LED 1D ¢)) = -M——[—terms in v~* and smaller;

JT)
4./(3vT,) iQ2Y D (S, —S,—S,) kO
T,+3T7,
2/(3T;) iB_ kY
P& (0—0 )2 (T4 3T) "
On multiplying these by 4vQ2T, and 20v8Q2 /(8T,) respectively and adding, the con-

dition that no non-periodic terms shall appear in the particular integral of these
equations is

— 26,28 J(3vT)) FO &

M(EP, L0, ¢0) = ¢, QkD +

24024 /(T,T,) Y27 (§+5,—5,) B
T,+3T,
12 /(T,T,) ¢*Q*B_, kY
a*a'(w—0')? (1;+37,)

— 0. (60)
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THE DIVISIONS IN SATURN’S RINGS 211

Similarly from equations (49) we find

0)

L(EV 1D ¢) = el [401(27{2 _,“{(3377: )) ki -+ terms in »~¥ and smaller:l;
— . 2¢,q(T,—3T,)
D [ o) g 1 n

MED LS a) =4 [{J<3T>+J(3T>}(T+37;9 z
v % J3YO(S,— S, —S) KO ig? /3B, E®
i o e o)
44T, 219>/ (37,)

5 and P respectively and

On multiplying b -

PG DY (J(5T) +J (T} AT +J(3T,)
adding, the condition that no non-periodic terms shall appear in the particular
integral is

deig 3T A T)RY | 60%(S, S S) YVRY
WT+3T,) ((3T,) +J (3T, JT)
3¢2B, k"

Seo=a) ) " oy

On eliminating the ratio £/k from (60) and (61) and reducing, we have
B
2T(T,+T5) vt = 30 (T T[S, 8) + 0 BT+ GT)P sy (62

Hence the periodic solution is unstable at points defined by

,Q:

q
vH{J (8T +V(3T,)}

As already pointed out, 7;,, and 7 differ, for small values of the integer ¢, by
a quantity of lower order than either. Hence this formula may be written, with
sufficient accuracy,

Passing to the case (31 (v)) we have, retaining only the principal terms,

4 _
Q= 1— /(3T o 9~/(3VT;)3
0 aB;+2qa’Bq
&P = 4a2a"?(w—w")2 ¢ J(3VT,)’ 7790,
BI
a — _ 0
Xt = 3¢%aa’*(w—w")?’
Y0 = 2X,

G-V 2T, = 0T, ¢,
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212 G. R. GOLDSBROUGH ON THE THEORY OF
(¢o+q)*+ VT, = ¢,
—i(20Q¢)+v2%Q,) = —2ig*/(3vT),
—i{2Q(cy+q) +v2%Q,} = — 210y,

[0 Z«/?’/;(O)
- QJ(VT)
[ = 22/:,‘10’.

Using those values in equations (48) and retaining only the highest order of terms,
we find

(1) 7D __61"%/3/&0) (1) Z(0)
(ks ’Zs 360)_ ,\/(VY;') ‘I“QQQY—(; kn

“‘492Y—(}1)zsz)“492/\122(10)“‘GQZXSI(;)HO)S (63)
MED 0, 00) = qoy K +2ig>  (3vT) X4 BY
—2iq? /(3vT,) Y_ k.

In order that no non-periodic terms may appear in the particular integral of
equations (63) the sum of the product of the right-hand members of the first and
4v¢®T,, and the product of the right-hand member of the second and —2ig%,/(3vT})
must be zero. That is

. _ yA() T , ,
berig? J(WT) KO+ ok ) (3020, 1 30 B) — . (64)

Similarly, equations (49) give

~ 3 B’A(O)
LD, 10, 00) = e 20, g 4+ g2 (T —9X{0) B9 — o2 m]

$ 2% 2aa"?(w—0")
2zJ3B FO
2a%a’ (0 —0")? J(Vﬂ)]

In order that no non-periodic terms may arise in the particular integral of (65), the
sum of the product of the right-hand member of the first and ¢2, and the product of the
right-hand member of the second and — 2i¢? should be zero. That is

FO
4a%a"*(w—w')? J(3VT){(
On eliminating £/ we find

$aB;+3¢a'B 1 {(1-2q) aB,+2(¢—¢°) a'B;}
4a*a’t(w—w')*

T, 180, 00) = 6] 26, GRS+ (10 + X (V) B0 —

—2¢,1¢%0 4 6¢°) aB,+ (64> —6¢*) a'B,} = 0, (66)

12¢3¢% =

(67)
Hence, since ¢>1, ¢, is a pure imaginary. The periodic solution is then stable at the

positions given by :
2 — gL~ (3T}
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THE DIVISIONS IN SATURN’S RINGS 213

The conjugate value 2 = ¢{1+./(3vT})}~! similarly shows stability.

The further cases (31 (ii)), (31 (iii)) are involved in those already considered.

For completeness, we should proceed to the equations associated with higher powers
of e. Owing to the complexity and extent of the expressions this is hardly possible
with satisfaction. The inclusion of such terms cannot change the zones of instability
already obtained though it might lead to additional zones of instability.

GENERAL CONSIDERATION OF THE RESULTS

It has been shown that a system consisting of a large primary, surrounded by a ring
of numerous small particles perturbed by a co-planar satellite, possesses a family of
periodic orbits for which the parameter is £. For certain values of £, the periodic
orbits do not exist. In general the remaining orbits are stable; but for values of 2
defined by

g
2=, (68)
_ q
and Q - QJ(SVn) ] (69)

the orbits are unstable. By using v7, as a variable in s, with a lower limit zero, and a
finite, though small, upper limit, the formulae (67), (68) are seen to define certain
ranges of the parameter Q.

For ¢ = 1, (68) gives negative values for the rotation of the ring. For ¢ = 2, 3 there
is some doubt as to the range of instability, but there is certainly instability at 2 = §.
For higher values of ¢ the instability is clear. The values of £ for differing integers ¢
and the varying values of v7, are therefore seen to determine a series of zones of
instability. These zones have their inner edges at 2 = 44 and extend outwards in each

case. Further, the zones do not overlap so long as ¢+1 <'71;iT .
)

In applying (69) we need only consider the lowest value of ¢ for which instability
occurs. This gives a single zone extending from a point defined by the maximum value
of T, up to the perturbing satellite. The zones for higher values of ¢ lie within the last.
This formula thus prescribes an outer limit beyond which no stable ring can exist.

The points at which no periodic orbits exist as given by (27) and (28) are readily
seen to lie within one or other of these zones.

It should be noted that the whole of this theory is based upon periodic orbits of the
particles forming the ring. The production of periodic orbits, however, requires special
initial conditions, and these conditions may not exist. But, as pointed out by Moulton
(1914), the characteristics of the motion of a non-periodic orbit are analogous to those
of a periodic orbit in the same general neighbourhood. That is, if a periodic orbit is
decidedly stable, a neighbouring non-periodic orbit, produced by slightly varying the
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214 G. R. GOLDSBROUGH ON THE THEORY OF

initial conditions, is also stable, and conversely. Hence the results found for periodic
orbits may be regarded as of general application.

APPLICATION TO THE SATURNIAN SYSTEM

In proceeding to apply the preceding results to the ring system of Saturn, it is
necessary to make a choice of satellite. The innermost, Mimas, might be considered
most appropriate in affecting the ring. But the second satellite, Enceladus, has four
times the mass and is only about % further away from Saturn. Also Tethys, while still
further, is again much greater in mass. We shall therefore consider each satellite
independently.

The quantity v7; appearing in the formulae is unknown except that according to
Maxwell it must have a certain small upper limit. Its maximum value will be deter-
mined from the known dimensions of the Cassini division of the ring.

The dimensions of the ring as observed by Lowell (1916) are:

Outer radius of ring A 20-01",
Inner radius of ring A 17-64",
Outer radius of ring B 16-87",
Inner radius of ring B 13-007,
Radius of Encke’s division 19-00".

Consider each satellite in turn.

I. Mimas. o' = 26-8".
The inner boundary of each zone as given by (68) is £2 = }¢. Omitting ¢ = 1,2 for
reasons already stated, we have

g=38, =3, a=0481, a=1289"
4 2 0:630 16-87"
5 2 0711 19-05”
6 3 0-763 20-44"

Each of these corresponds to a marked feature of Saturn’s ring. The first is near the
inner edge of ring B; the second is at the inner edge of Cassini’s division; the third
is at the position of Encke’s division; and the fourth is just outside the boundary of
ring A.

The maximum value of vT; for the system can be determined from the measured
radius of the outer boundary of Cassini’s division. Improved accuracy may be obtained
by using the complete equation (22) in place of the approximation (68). Using
a = 17-64" from the table and &' = 26-8”, we find that v7, has the maximum value
0-0342.

With this value of vT, formula (68) will give the outer boundary of each zone. For
g = 3, the consequent zone would penetrate into ring B. But, as pointed out earlicr,
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it is doubtful whether the range of instability at ¢ = 3 is so wide, though it certainly
exists at the point 2 = 3.

Next use the determined value of v7, in (69), or, better, use the original equation (22).

We should then have for ¢ = 1 a zone of instability extending from a = 12-54” to the
orbit of Mimas, thus blotting out the whole ring. It is readily shown, however, that the
right-hand member of (62) for ¢ = 1 is exceedingly small. Compare the values for
¢ = 1 and ¢ = 2 of the principal part of (62), viz.
VDS, ~8,—5) + /BT + BT gy e (70
at the points where »T, has its maximum value. It appears that for ¢ = 1, (70) has the
value 0-00088, and for ¢ = 2, it has the value 0-217. The modulus of instability at
q = 1 thus is small compared with that at ¢ = 2; so small that, for a satisfactory result,
it would be necessary to include in the computation the terms of lower order which
were neglected. We may take it that if the orbits are unstable at ¢ = 1, the modulus
of instability is very small. _

On taking ¢ = 2, the zone of instability commences at 20-2” and extends outwards
to the orbit of Mimas. This result defines the outer edge of ring A with fair accuracy.

Lastly, applying (68) to the case ¢ = 5, and using the value of v7 just found, the outer
edge of this zone is determined at 19-56”. This corresponds to the observations of the
Encke division, but would seem to give a width rather greater than the observed gap,
which is, however, difficult to measure.

For higher values of ¢ the divisions are obliterated by the large zone arising from (69).

The largest value of v7, permitted by the Maxwell theory of a simple ring without
a satellite is 0-039. The value derived by the present work from the dimensions of the
Cassini division is 0-0342, just below the Maxwell limit.

I1. Enceladus. o’ = 34-4".

Omit the values ¢ = 1, 2 as before.

¢g=3, Q=3 a=0481, a =16-54"
3 2 0-630 21-6"

The division beginning at 16-54" is within ring B. There is no observed division at
this point. That at 21-6” is outside the observed ring system.

None of the remaining satellites give divisions in the observed ring system. Each
could, however, give a zone of instability corresponding to ¢ = 2 near to the origin
(really in the vicinity of the surface of Saturn). But as pointed out, it is doubtful from
the analysis whether this zone of instability really exists, and it is therefore not sur-
prising to find that the whole ring system is not dissipated by the large mass of Titan.

The results of this analysis are to show that the observed ring system of Saturn is due
to the innermost satellite Mimas. The inner edge of ring B and the outer edge of ring A
are indicated with considerable accuracy. The Cassini division and the Encke division
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are also accounted for. The masses of the particles (taken as equal in this work and
therefore as representing the mean value of those in the actual ring) are just below the
limiting value prescribed by the Maxwell criterion.
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